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An alternative approach for the analysis of the electromagnetic field and plasma-wave propagation in
a waveguide filled with an electron (e) beam is presented. The analysis is based on a formal exact expan-
sion of the total electromagnetic field in terms of waveguide modes. We subsequently use linear fluid
plasma equations and electromagnetic coupled-mode theory to find the dispersion relation for the eigen-
modes of the beam (plasma) loaded waveguide. The proposed method enables one to solve for the Lang-
muir space-charge waves in an e beam with an arbitrary transverse geometry and density distribution,
moving along any uniform-cross-section waveguide at constant average velocity. The use of the method
is demonstrated by presenting a calculation of the dispersion curve and the plasma frequency reduction
factor of plasma modes in a practical case of a circular beam drifting along a rectangular waveguide.

PACS number(s): 52.40.Db, 52.40.Fd

I. INTRODUCTION

Much effort has been directed towards the investiga-
tion of self-field effects in charged beams and plasmas
[1-6]. In the early work of Tonks and Langmuir [1], the
oscillation of uniformly distributed electrons, which are
neutralized by positive ions, was studied. It was shown
that the plasma oscillation frequency of an infinite elec-
tron cloud is given by w,=V"nge?/eym , where ny, is the
density of the electrons and e and m are the electron
charge and mass, respectively.

Excitation and propagation of electromagnetic and
space-charge waves in electron beams drifting at a con-
stant velocity play an important role in many electronic
devices, especially electron microwave tubes. The
analysis of waves in a plasma is based on the solution of
Maxwell’s equations, together with the beam-flow equa-
tions under appropriate boundary conditions. In a one-
dimensional (1D) model, where an infinite beam with uni-
form density distribution is assumed, the electric field
remains entirely within the plasma and only two (‘“fast”
and ‘“‘slow”) longitudinal-field plasma waves are found to
propagate. The 1D case is an idealized model, which
may not be useful for practical cases, where a finite-
cross-section beam is moving along a partially filled me-
tallic tube or waveguide. A more accurate model should
take into account the finite size of the beam and the effect
of the conducting walls of the drift tube.

Plasma waves in a finite cross-section electron (e) beam
were first analyzed by Hahn [2] and Ramo [3]. A distinc-
tion between “plasma waves” and “field waves” was sug-
gested [3]. For the first type, the phase velocity is close
to the beam velocity and the electrons are carrying most
of the wave energy. Such waves (slow and fast waves of
different transverse profiles) can also propagate in the
plasma at frequencies below the cutoff frequency of the
waveguide. When the phase velocity is much greater
than the drift velocity of the electrons, the wave is termed
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“field wave,” for which the energy is mainly in the elec-
tromagnetic field.

Contrary to the case of a transversely infinite electron
beam, where the electric field of a density-modulated
space charge is purely longitudinal, in the case of a
finite-cross-section beam, there is a fringing field near the
edges of the beam. Fringing is further increased by the
presence of conducting walls. The modification of the
space-charge forces due to the finite cross section of the
beam and the conducting walls surrounding the beam
leads to a reduction of the plasma oscillation frequency in
the axial direction. The reduction of the frequency of os-
cillation for a given plasma mode, relative to the plasma
frequency w, of an infinite beam, is an important design
parameter for all types of electron tubes. In [4] the plas-
ma frequency reduction factor was calculated for a
variety of uniform-density beam shapes and drift tubes
with circular symmetry.

Renewed interest in excitation and propagation of plas-
ma waves in electron beams emerged recently in connec-
tion with free-electron lasers (FEL’s). Such devices in-
volve density-modulated e beams in which space-charge
waves are excited in addition to the electromagnetic radi-
ation of the signal. Space-charge forces between the
bunches become significant when the FEL utilizes an in-
tense beam with a high electron density (Raman regime
FEL) [7]. Collective effects in FEL’s are expected to
affect the gain, bandwidth, and efficiency of energy
transfer from the electron beam to the radiation field
[8,9]1. A 1D description of the space-charge field in a
FEL is insufficient because of the finite transverse dimen-
sions of the e beam and the effect of the conducting walls.
In typical experiments the transverse (fringing) field of
the excited space-charge waves may be comparable to the
axial field [10]. Thus it is necessary to use a more ela-
borate model which takes three-dimensional aspects of
the plasma-wave propagation.

Several papers discussed the problem of space-charge
effects in the framework of 3D models of FEL’s. Most of
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these works [11-14] treated the plasma waves in the
framework of a 2D model (planar or circular symmetry),
where the eigenmodes of the e beam could be found by
solving a dispersion relation emanating from solving the
fields inside and outside of the beam and matching
boundary conditions at the beam and conducting wall
boundaries. Such analytical calculations may be difficult
for the general case in which the transverse dimensions
cannot be reduced by symmetry into a single dimension
(for example, the practical case of circular beam in a rec-
tangular waveguide). Another semianalytical approach
was suggested in [15], based on Fourier transformation of
the Maxwell and Boltzmann equations. The field is
represented as a superposition of plane waves, for which
a matrix dispersion relation is found. This approach can
be applied to general e beam cross sections, but is limited
to the cases of free-space or rectangular-waveguide prop-
agation.

In this paper we develop a general theory for analyzing
the space-charge field in waveguides with arbitrary trans-
verse geometries. The total electric field in the plasma-
loaded waveguide is expressed as a sum of the transverse
eigenmodes of the empty waveguide. The expansion
leads to a set of coupled-mode equations, which are
solved to produce the dispersion equation of the plasma
waves in the beam-loaded waveguide. Such an approach
eliminates the need for solving a two-dimensional prob-
lem, in which conditions on the transverse boundaries of
the e beam and of the waveguide must be considered.

Our formulation should be especially useful for
analysis of FEL and other microwave tubes, where there
is no need to solve the dispersion relation of the plasma
waves separately from the dispersion equation of the de-
vice. However, in the present article we confine our
analysis to the solution of the plasma waves in a nonradi-
ating structure, namely without coupling to field waves
(as in the FEL). In particular we show how this formula-
tion can be applied to solve problems with mixed symme-
try (e.g., a circular e beam in a rectangular waveguide).

II. EXCITATION OF WAVEGUIDE MODES

The excitation of an electromagnetic field in a
waveguide is calculated by expansion of the total field in
terms of eigenmode solutions of the empty waveguide,
following the network formalism developed in [16,17].
This enables us to transform the inhomogeneous steady-
state Maxwell vector field equations into scalar
transmission-line equations. The equations describe the
amplitude growth of each waveguide mode excited by a
harmonic current source J(7,t )=Re{f (r)e —Jot } distribut-
ed along the axis of propagation. The results will be used
later for calculation of the total electromagnetic and
space-charge fields in a plasma waveguide.

For a perfectly conducting waveguide, filled with an
isotropic medium, it is possible to write the transverse
electric field as a linear superposition of a complete set of
transverse waveguide eigenmodes:

E(r)=3 V,(2)6,,(x,y),
q

r)=3I,(2)#, (%) . (1)
q
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V,(z) and I,(z) are the scalar amplitude of the mode and
6 41(x,p) and ﬂql(x,y) are complex vectors representing
the transverse profile and polarization of the electric and
the magnetic fields of waveguide mode g, respectively.
The above summation consists of both TE and TM mode
profile functions. r represents the (x,y,z) coordinates,
where (x,y) are the transverse coordinates and z is the
longitudinal axis of propagation. This modal expansion
can be carried out for any kind of waveguide with a uni-
form cross section, and it is an exact representation of the
field since {6,,(x,y)} (including cutoff modes) is a com-
plete set.

From Maxwell’s equations, by imposing the boundary
conditions on the waveguide walls it can be shown that
the evolution of the electric and magnetic mode ampli-
tudes V,(z) and I (z) is described by two coupled first-

order differential equations [17]:

d
——EZ—Vq( z)= _]kzq q q( z)
+zr [ [T, (x,p)dx dy ,
2)
d 1
“Elq(z)——]kqu—Vq(Z)
+ [ [Tr)-83(x,y)dx dy .

is the longitudinal wave number of the

b=V R,
mode, k =V eu, and Z, is the mode impedance given by
Zrg, =op/k,, for TE mode and Z1y, =k,, /we for TM
mode. From this transmission-line formulation, a
differential equation of the second order for the ampli-
tude of the electric-field modes V,(z) can be derived easi-

ly:

a2 2
VKLV (2)

=—jkyZ, [ [T.(r)-&5(x,y)dx dy

dr,(r)
~Ziwg [ [ =5~

The normalization of each mode is chosen in this
derivation to satisfy the orthornormality relation:

f f gql(x’y)'g;'i(x,y )dx dy =38, 4)

and consequently the longitudinal components fulfill

[ [&,.x8&}.(x

g;iqu(x,y Jdx dy . (3)

k2
—l 5 (5)

ylaxdy=—— Ik 2 g’

III. THE ELECTRON-BEAM FLUID EQUATIONS

To describe the small signal oscillation in a cold-
electron beam, we use the standard plasma moment equa-
tions. In this linear fluid model, the ac perturbations in
the space-charge density and in the electron axial velocity
are assumed to oscillate at a single angular frequency w.
The total density of electrons in the beam is given by

n(r,t)=ny(x,y)+Re{a;(rle /¥ , (6)
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where ny(x,y) is the dc part of the beam density and
7i;(r) is the first-order perturbation of the density modu-
lation oscillating at w. Similarly, we expand the axial ve-
locity of the electrons to its first order:

v,(r,t)=v,0+Re{T/(r)e 79} . (7)

The longitudinal ac part of the current density is

Tiry=—e[ny(x,p )0l (r)+v,0m(r)] . (8)

The connection between the oscillation of the space-
charge density and the modulation in velocity is found
from the continuity equation. In a magnetically confined
beam, transverse components of the electrons velocities
are sufficiently small compared to the longitudinal ones.
This allows a common approximation in which trans-
verse variation of the current density is neglected
(|V,-Ji| << |aJ} /3z|) in the equation of continuity

ari(r)
dz

The axial velocity 7;/(r) is found from the relativistic
axial force equation [9]:

=—jowen(r) . 9)

e

d ~i LW 7sC

—u,(r)—j—0,(r)=—————E"(r) . (10)

dz * Vo Yo¥aomvo
vo=(1—B3)"12 is the Lorentz factor and

¥,0=(1—B%) 12, These parameters may be different
from each other when a monoenergetic electron beam is
transported in a focusing magnetic structure (like a
wiggler in FEL). Otherwise y,,=v, The forcing term
E3“(r) is the longitudinal component of the ac electric
field of the electron beam, oscillating at w.

The total ac space-charge field, which is caused by the
density modulation, can be found from the Poisson equa-
tion:

VE (r=—"Smr). (11)
€o

From Egs. (8)-(11), a differential equation of the
second order for the density bunching is derived

2 ®%(x,y)—w?
V0 V20
2(x,¥) €
=———2—y——leS°<r, (12)
V20

where we define ) (x,y)=(e’/ysylo€om ng(x,y). This
“beam equation” fully describes the evolution of the
space-charge density modulation along the axis of propa-
gation.

Note that in a 1D model, where an infinite beam with a
uniform density distribution is considered, there are no
transverse variations in the self-field. Thus Eq. (12) be-
comes homogeneous and the two well-known solutions of
slow and fast plasma waves can be found easily. It is ex-
actly the forcing term on the right-hand side that brings
up the 3D effect of the fringing field. In order to solve
the complete 3D problem, it is necessary to find the
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transverse component E}°(r) and substitute it into the
beam equation.

Now we use the modal expansion, presented previous-
ly, and substitute Eq. (1) into the beam equation (12),
rememberlng that in a waveguide each mode satisfies

v, -8, =—jk,&

zq qz
d? o d oy (x,y)—
L a0 —2i2 L an)+ 1.
dzzn,(r) jl’zo dzn,(r) o) m;(r)
o (x,y)
=1———~————2qu 2(2)6 4, (x,y) . (13)

V20

The amplitude V,(z) of the excited modes can be ex-
pressed in terms of the density bunching #;(r) by substi-
tuting Eq. (9) into Eq. (3):

V( VHELV,(z )=jeiok,;ffﬁ,.<r>$;(z,y)dx dy .

(14)

Equation (13), together with the set of Egs. (14), describes
the density modulation in the electron beam and the am-
plitude of each mode excited in the waveguide.

The only modes that can be excited by the longitudinal
ac current are the TM modes which are observed to be
coupled by the density bunching 7;(r). While this set of
equations includes only the amplitudes of the electric-
field-mode profiles V,(z), clearly in the general case also
the magnetic field is excited. The magnetic field can be
calculated in principle from the solution of (13) and (14)
by substituting in (1).

IV. THE DISPERSION EQUATION
OF THE SPACE-CHARGE WAVES

The eigensolutions of the above linear set of homogene-
ous equations are found by assuming behavior of the
form e* and substituting the mode amplitudes ¥V, (s) from
Eq. (14) into the beam Eq. (13). We find

2

®2(x,y)
s—j—w -f———lJ 3 f;(s,x,p)
V20 V20
2 2
@p(x,y) L
=— 6 (x,p)

Xffﬁ,—(s,x,y)g;‘z(x,y)dx dy .
(15)

The profile functions & 42{%,y) of the longitudinal com-
ponent of the TM modes including cutoff modes are a
complete set of orthogonal functions which can be used
to expand the density bunching in a linear combination:

A5, x,9)=3 A,(5)8,(x,p) . (16)
q9

Substitution of this expansion_into Eq. (15) and scalar
multiplication of both sides by & ;’:z(x, y) gives
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s—jvi A )+ S A 1o(s,0)=0,  (7)
z0 q
where
ki
6% . (s,0)= 1+2_‘12__
pa'q v}
0 (x,y) _
f f_Pzing(x’y)g;z(x,y )dx dy
X Uz0

f f ng'z(x,y)lzdx dy
(18)

This constitutes a set of algebraic equations for the ex-
pansion coefficients A4,(s) of the density modulation.
This homogeneous system can be presented in a compact
matrix form:

2
s—j== | L+8(s,0)
220

A(s)=0. (19)

The coupling between the coefficients A4,(s) is expressed
by the matrix Q_},Z), whose elements are given in (18).

The condition for nontrivial solution for A4,(s) is that
the matrix determinant is null. This yields a characteris-
tic equation from which the propagation constants
B=Im{s} of the eigenwaves (both field waves and plasma
waves) can be found:
2
s—j—= | I+8P(s,0)
V20

=0. (20)

V. SOLUTION OF THE SPACE-CHARGE MODES

Without any restriction on generality, consider now an
electron beam having a space-charge density which is
uniformly distributed over its finite cross section. The
characteristic Eq. (20) can be written in a convenient

form in terms of the dimensionless parameters
X=(c/w,)B=(c/w,)Im{s} and Y =0/w,:
[(B,oX —Y)I—R(X,Y)|=0. 21
The elements of matrix R ) are given by
1

2 -
ro (X,Y)=

74 (cky /o, )2

XZ___ Y2

X f fe heamng(x’y )g;'z(x,y Ydx dy
f wa|gq'z(x’y)|2dx dy

where integration is over the electron beam or the
waveguide (WG).

When a uniform density, magnetically confined elec-
tron beam completely fills up the waveguide, there is no
coupling between the modes. The off-diagonal terms in
R ¥ vanish due to the orthogonality relation and the ma-
Eix 5(2) is naturally diagonal. Namely the profiles
64, (x,y) of the unloaded waveguide TM modes are also

,  (22)
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the profiles of the space-charge eigenmodes of the beam
for any uniformly loaded geometry. Their propagation
constants 3 are found from the well-known characteristic
equation:

Y=B,X£r,(X,Y) . (23)

In non-normalized terms this dispersion relation spells
©=v,Btr,0,, which helps us to identify Eq. (23) as the
well-known modified 1D plasma dispersion equation,
where 7, (X, Y) is the so-called plasma-frequency reduction
factor of the space-charge mode g. The signs + or —
stand for fast or slow modes, respectively.

The fact that the space-charge waves propagate with a
velocity which is nearly equal to that of the beam permits
us to approximate the propagation constant by
B=Im{s}=w/v,, (see Ref. [18]). Using this approxima-
tion, we can obtain the expression for the reduction fac-
tor of the plasma frequency in a confined beam, which
fills the entire space between the waveguide walls:

21-1/2
} . (24)

This expression is identical (except for the relativistic
correction) with the well-known expression which is de-
rived in standard text books for waveguides of cylindrical
symmetry [18]. Our general derivation proves its validity
for uniformly beam-loaded waveguides of an arbitrary
cross section.

For the general case, where the beam partially fills the
waveguide, the matrix R 2) is not diagonal and the
dispersion Eq. (21) must be usually solved numerically.
Also in these cases it is convenient to make an approxi-
mation analogous to the previous case and substitute in
R B=Im{s}=w/v,, (or X=w/w,). Equation (21)
then looks like an algebraic eigenvalue problem
IR®—AI|=0, and the plasma-frequency reduction fac-
tor of the gth space-charge mode is given by 7, =1/ kq.
Using this simple approximation, we now demonstrate
the use of the general coupled-mode formulation to calcu-

1+

qu
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late the plasma-dispersion relation curves in a
Dispersion curves
4
a=b=1cm
351 p25mm Fast mqdes
3y £-05
Wl
2.5 BZO=0.5
3l 7
I 1.5 bdes
14
0.5
0
-0.5

FIG. 1. Dispersion curves of three fundamental space-charge
modes of a circular e beam propagating along a rectangular
waveguide.
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FIG. 2. Plasma frequency reduction factor vs the propaga-
tion constant of the three fundamental space-charge waves.

configuration that has not been analyzed previously.

In various practical devices (such as microwave elec-
tron devices and FEL’s), a circular electron beam propa-
gates along conducting pipes, such as rectangular or
curved parallel plates waveguides. The calculation of the
space-charge waves in this case cannot be done by solving
the plasma modes in a direct analytical way.

We calculated the plasma-dispersion curves of a circu-
lar e beam of radius r, =2.5 mm, drifting at a velocity
v,0=0.5c along a 1X1 cm? rectangular waveguide. Fig-
ure 1 shows the dispersion curves of the first three funda-
mental slow and fast space-charge modes, calculated with
7X7=49 waveguide modes. The asymptotic behavior of
the waves when X — o is of the form Y=, X*1 (e.g.,
©=v,08+w,) for the fast and slow modes. The plasma-
frequency reduction factor for the various transverse
plasma modes is illustrated in Fig. 2.
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VI. CONCLUSIONS

In the present paper we developed a coupled-mode
method for finding the space-charge waves of a confined
beam, which partially fills the waveguide. Instead of
solving the Maxwell equations together with the plasma
fluid equations and matching boundary conditions at the
beam and waveguide surfaces, as is done in usual analy-
ses, the total electromagnetic field is expanded as a linear
combination of the empty waveguide TM modes. Using
coupled-mode theory, we derived a set of coupled linear
equations for the density and the waveguide-mode ampli-
tudes from which a dispersion relation in the form of a
matrix eigenvalue problem is obtained. This relation can
be solved numerically quite straightforwardly. The solu-
tions of this dispersion relation results in the dispersion
curves and the plasma reduction factor parameter of the
space-charge waves, which are the natural modes of the
beam- (plasma) loaded waveguide.

This method is very useful in problems where the
space-charge waves cannot be found analytically because
of the complexity of the boundary conditions or because
the e beam (plasma) density is not distributed uniformly.
Using coupled-mode analysis makes it possible to calcu-
late the plasma-frequency reduction factor in practical
asymmetrical schemes, which are found in many elec-
tronic devices. The theory is applicable for free-electron
lasers which are operating in the collective (Raman) re-
gime.
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